Hands-on Exercise 5: Network Constrained Spatial Point Patterns Analysis (NetKDE)

Dr. Kam Tin Seong, Associate Professor of Information Systems (Practice) https://www.smu.edu.sg/faculty/profile/9618/KAM-Tin-Seong (School of Computing and Information Systems, Singapore Management University)https://scis.smu.edu.sg/
2021-06-02

Overview

Network constrained Spatial Point Patterns Analysis (NetSPAA) is a collection of spatial point patterns analysis methods special developed for analysing spatial point event occurs on or alongside network. The spatial point event can be locations of traffic accident or childcare centre for example. The network, on the other hand can be a road network or river network.

In this hands-on exercise, you are going to gain hands-on experience on using appropriate functions of spNetwork package:

The Data

In this study, we will analyse the spatial distribution of childcare centre in Punggol planning area. For the purpose of this study, two geospatial data sets will be used. They are:

Both data sets are in ESRI shapefile format.

Installing and launching the R packages

In this hands-on exercise, four R packages will be used, they are:

Use the code chunk below to install and launch the five R packages.

packages = c('sp', 'rgdal', 'spNetwork', 'tmap')
for (p in packages){
if(!require(p, character.only = T)){
install.packages(p)
}
library(p,character.only = T)
}

Data Import and Preparation

The code chunk below uses readOGD() of rgdal package to important Punggol_St and Punggol_CC geospatial data sets into RStudio as SpatialLinesDataFrame and SpatialPointsDataFrame respectively.

network <- readOGR(dsn="data/geospatial", 
                   layer="Punggol_St",
                   verbose = FALSE)
childcare <- readOGR(dsn="data/geospatial",
                     layer="Punggol_CC",
                     verbose = FALSE)

We can examine the structure of the output SpatialDataFrame in RStudio. Alternative, code chunk below can be used to print the content of network SpatialLineDataFrame and childcare SpatialPointsDataFrame by using the code chunk below.

str(network)
str(childcare)

When I exploring spNetwork’s functions, it came to my attention that spNetwork is expecting the geospatial data contains complete CRS information.

In the code chunk below, spTransform() of sp package is used to assign EPSG code to the SpatialDataFrames. The epsg:3414 is the code for svy21.

childcare <-spTransform(childcare, CRS("+init=epsg:3414"))
network <- spTransform(network,CRS("+init=epsg:3414"))

Visualising the Geospatial Data

Before we jump into the analysis, it is a good practice to visualise the geospatial data. There are at least two ways to visualise the geospatial data. One way is by using plot() of Base R as shown in the code chunk below.

plot(network)
plot(childcare,add=T,col='red',pch = 19)

To visualise the geospatial data with high cartographic quality and interactive manner, the mapping function of tmap package can be used as shown in the code chunk below.

tmap_mode('view')
tm_shape(childcare)+
  tm_dots() +
tm_shape(network)+
  tm_lines()
tmap_mode('plot')

Network Constrained KDE (NetKDE) Analysis

In this section, we will perform NetKDE analysis by using appropriate functions provided in spNetwork package.

Preparing the lixels objects

Before computing NetKDE, the SpatialLines object need to be cut into lixels with a specified minimal distance. This task can be performed by using with lixelize_lines() of spNetwork as shown in the code chunk below.

lixels <- lixelize_lines(network,700,mindist = 350)

What can we learned from the code chunk above:

After cut, if the length of the final lixel is shorter than the minimum distance, then it is added to the previous lixel. If NULL, then mindist = maxdist/10. Also note that the segments that are already shorter than the minimum distance are not modified

Note: There is another function called lixelize_lines.mc() which provide multicore support.

Generating line centre points

Next, lines_center() of spNetwork will be used to generate a SpatialPointsDataFrame (i.e. samples) with line centre points as shown in the code chunk below.

samples <- lines_center(lixels)

The points are located at center of the line based on the length of the line.

Performing NetKDE

We are ready to computer the NetKDE by using the code chunk below.

densities <- nkde(network, 
                  events = childcare,
                  w = rep(1,nrow(childcare)),
                  samples = samples,
                  kernel_name = "quartic",
                  bw = 300, 
                  div= "bw", 
                  method = "simple", 
                  digits = 1, 
                  tol = 1,
                  grid_shape = c(1,1), 
                  max_depth = 8,
                  agg = 5, #we aggregate events within a 5m radius (faster calculation)
                  sparse = TRUE,
                  verbose = FALSE)

What can we learn from the code chunk above?

The user guide of spNetwork package provide a comprehensive discussion of nkde(). You should read them at least once to have a basic understanding of the various parameters that can be used to calibrate the NetKDE model.

Visualising NetKDE

Before we can visualise the NetKDE values, code chunk below will be used to insert the computed density values (i.e. densities) into samples and lixels objects as density field.

samples$density <- densities
lixels$density <- densities

Since svy21 projection system is in meter, the computed density values are very small i.e. 0.0000005. The code chunk below is used to resale the density values from number of events per meter to number of events per kilometer.

# rescaling to help the mapping
samples$density <- samples$density*1000
lixels$density <- lixels$density*1000

The code below uses appropriate functions of tmap package to prepare interactive and high cartographic quality map visualisation.

tmap_mode('view')
tm_shape(lixels)+
  tm_lines(col="density")+
tm_shape(childcare)+
  tm_dots()
tmap_mode('plot')

The interactive map above effectively reveals road segments (darker color) with relatively higher density of childcare centres than road segments with relatively lower density of childcare centres (lighter color)

Network Constrained G- and K-Function Analysis

In this section, we are going to perform complete spatial randomness (CSR) test by using kfunctions() of spNetwork package. The null hypothesis is defined as:

Ho: The observed spatial point events (i.e distribution of childcare centres) are uniformly distributed over a street network in Punggol Planning Area.

The CSR test is based on the assumption of the binomial point process which implies the hypothesis that the childcare centres are randomly and independently distributed over the street network.

If this hypothesis is rejected, we may infer that the distribution of childcare centres are spatially interacting and dependent on each other; as a result, they may form nonrandom patterns.

kfun_childcare <- kfunctions(network, 
                             childcare,
                             start = 0, 
                             end = 1000, 
                             step = 50, 
                             width = 50, 
                             nsim = 50, 
                             resolution = 50,
                             verbose = FALSE, 
                             conf_int = 0.05)

What can we learn from the code chunk above?

There are ten arguments used in the code chunk above they are:

For the usage of other arguments, you should refer to the user guide of spNetwork package.

The output of kfunctions() is a list with the following values:

For example, we can visualise the ggplot2 object of k-function by using the code chunk below.

kfun_childcare$plotk

The blue line is the empirical network K-function of the childcare centres in Punggol planning area. The gray envelop represents the results of the 50 simulations in the interval 2.5% - 97.5%. Because the blue line between the distance of 250m-400m are below the gray area, we can infer that the childcare centres in Punggol planning area resemble regular pattern at the distance of 250m-400m.

References